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On tests for equicorrelation coefficient and the
generalized variance of a standard symmetric

multivariate normal distribution

Ashis Sen Gupta
Stanford University

1. Introduction and Summary. A random vector follows a symmetric multivariate

normal (SMN) distribution (Rao, 1973) if the components have equal means,

equal variances and equal covariances -- the correlation coefficient, p,

between any two components is the same and is termed the intraclass, equi-,

uniform (Geisser, 1963) or familial (Fisher, 1925) correlation. Since they

arise naturally in psychology, education, medicine, genetics etc., such

models have received considerable attention, e.g. in the same year and in

the same journal by Geisser & Desu (1968), Gleser (1968) and Han (1968)

and very recently by Mak & Ng (1981). Again in bio-sciences (Press, 1981)

many organisms e.g. starfish, octopus etc. exhibit a natural symmetry and

consequently give rise to the above distribution. The importance of such

models in many tests of multivariate analysis, e.g. in MANOVA, Profile

Analysis, Growth curve analysis etc. has been established by Huynh and

Feldt (1970). Wilks (1946) and Votaw (1948) have considered likelihood

ratio tests for these models. Tests for p have been proposed by Srivastava

(1965) using Roy's union intersection principle, by Aitken, Reinfurt and

Nelson (1968) and by Mak & Ng using the likelihood ratio (LR) principle,

by Rao (1973) using the canonical form of the SMN distribution and by

Cokhale & SenGupta (1982) using the approach of locally most powerful (LMP) tests.

These models have been investigated using the theory of products of problems

by Arnold (1973) and in the general framework of representation theory and

invariance by Andersson (1976). Recently, they have been generalized, e.g.

by SzAtrowski (1979) to incorporate block symmetries. I.
A random vector X will be said to follow a standard symmetric multi-

variate normal (SSMN) distribution if it follows a SMN distribution and
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additionally the components have zero means and unit variances. Though

the literature on the SMN distribution is quite extensive, yet little

is known about SSMN distributions. In particular, no tests for p is

known for SSMN distributions. However, such distributions can occur naturally

in various ways (Sampson, 1978). One such situation is 'when there are

many observations individually taken at different times on each scalar

multivariate normal random variable, and then several vector observations

are taken for all the variables together'. Another situation is 'when

there are many missing observations for individual entries in the vector

sample' and complete observation vectors are treated as coming from the

distribution with 'known' means and variances found by using vectors with

missing entries. Further, in many practical problems it is necessary to

standardize the variables. Even the sample means and variances are

usually employed for such standardizations and then the resulting variables

behave asymptotically by Slutsky's theorem, as standardized random vari-

ables. Such standardizations are always made and play important roles in

the techniques for reduction of dimensionality, e.g. in canonical variables

(Anderson, 1958) and generalized canonical variables analysis (Sen Gupta,

1981b,c). Finally, if the means and variances are known and hence can be

considered as zeros and ones respectively, the discussions in the previous

paragraph translates to the case of SSMN distributions. The present case

is also quite interesting from several theoretical considerations. Firstly,

it provides a practical example of Efron's curved exponential family

(Efron & Hinkley, 1978) and illustrates some associated difficulties and

techniques to overcome them. Secondly, observe that this situation arises

when the components of X are exchangeable, i.e. the distribution of X

is independent of permutation of its components. Also, the SSMN distribution

.* constitutes an example of the mean-zero invariant model of Andersson.
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Thirdly, it indicates (through p) the construction of simple, intuitive

estimators of the correlation coefficient for such models in contrast

to those obtained by the iterative method of scoring of Fisher or the

sequential Robbins-Monro procedure suggested by Sampson (1976). Finally,

it is demonstrated that unlike the LR tests, small sample optimal test for

the correlation coefficient may be conveniently derived in such models.

Though, as noted by Anderson (1963) 'the theory in the case of correlation

matrices is much more complicated than for covariance matrices and no

4general result could be given in a simple form', we observe that for the

above important and special structure of the correlation matrix, interesting

and elegant results can be derived.

Several estimators and tests for p are considered. Like the bivariate

case, the maximum liklihood estimator (MLE) is obtained as a root of a cubic

equation and is shown to lie in the interval restricted by p. But, unlike

the incomplete bivariate case (Dahiya & Korwar, 1980) it may be necessary

to evaluate all real roots of this equation which makes the estimation cumber-

some and the exact distribution of the estimator nearly intractable. This

also renders the LR test statistic computationally quite inconvenient.

Further, it is shown that the LR tests for one-sided alternatives are

vacuous with positive probability. This serious drawback, coupled with

the lack of knowledge regarding its small sample properties and computational

inconvenience motivates the development of alternative tests. A test based

on the best natural unbiased estimator (BNUE) of p is proposed. Also,

a LMP test for p is derived and is seen to co-.ncide with that based on

the BNUE of p. This test is proved to be unbiased. The exact distribution

* of this test statistic, historically, happens to be a problem attempted by
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Pearson et al (1932,p.341). The exact and asymptotic distributions are

derived here. Percentage points are available. The case of constrained

parameter space is considered.

The generalized variance, the determinant of the dispersion matrix,

was proposed by Wilks (1932) as a scalar measure of multidimensional

scatter. It has enjoyed applications in nearly all branches of applied

statistics. But, tests and associated exact distributions (SenGupta, 1981a)

become quite complicated in the general case. However, for the SSMN distri-

bution some simplications are available. The LR test, which again is

computationally inconvenient, is derived. Alternatively, an elegant and

simple test based on a characterization through the characteristic roots

of the correlation matrix is proposed by introducing the concept of conditional

characterisitic roots.

2. Tests for equi-correlation coefficient p.

Let Y i...,Y be an independent sample from N (O,E ) where, letting I and E
Mk- p

be the identity matrix and the matrix with all elements equal to unity respectively,

E= (I-p)I+pE; E-i = (-P) -II-P(l-p) -{I+ -)p}-1 E =(cij),
* p

cii = {l+(k-2)p}/(l-p){l+(k-l)p}, cij = -p/(l-p){l+(k-l)p}, i @ j.

Hence the density function for non-singular E can be written as

2 2
_______1 1 . (E y y.) (-p)

(_7y)k/
2j~ 11 /2 2 (1-p) (l+(k-l)p) (l-p)

_-D < y i < co, 1 , .... ,k, -1/(k-1) < P < 1.

The above representation is particularly useful because it shows that

(i) the density function constitutes a member of Efron's curved

exponential family

(ii) there does not exist any one-dimensional sufficient statistic for P
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-2(iii) E (yi-y) and y = y yi/k are independent and

(iv) the part of the exponent within the second bracket is monotonically

decreasing in p, with positive probability.

We want to test H0 : p = P0 against H1 : p<(>)p0 or against H2: p P0

2.1 Likelihood ratio test. For testing H0 against H2 the LRT is derived

below. The LRT can be performed even if m 1 1. The likelihood function can

be written from (2.1) above easily and differentiating this with respect

to p and equating the derivative to zero we have

22,p) y)2 ( p2 }  0,
g(P) -(k-l)kp(l-p){l+(k-3))p+EZ y. {1+(k-1)p +f~y.. l+(k-l)pI=0

.. . 3.)31)j i

where = ( j = l,...,m. This is a cubic equation in p,

two of whose roots may be complex. Now, g{-l/(k-l)}, g(l) and g(0) are all

positive (with probability one). Thus, it is not clear from g(p) that the-

ML estimator of p, say p, with -/(k-l)<l,will always exist. However, it

can be shown directly that lim f(y;p)= 0 for p - {-l/(k-l)}+ or p - 1 which

also conforms to a general result of Anderson (1970). Since a cubic equation

must have at least one real root it follows then that the ML estimator must

be in the interval restricted to p. Further, in cases of several admissible

solutions (at most three), by principle of Maximum Likelihood, we choose

as the MLE of p, that which corresponds to the largest value of the Likelihood

function and call it p. Thus we get the following.

Theorem 1. Let Y - N (O' ). Then if Yl,...,Y constitutes an independent

random sample from the above population, the Likelihood Ratio Test for

testing H0 : P=P0 against the alternative H2 : p#p0 , is given by

Reject H iff X = j Im/2exp[- - {a{f (p )-f (p)}+b{f(P)-f (p

< K, a constant



2 2
where p is the MLE of p, a y b y .) f(p) 1/(1-p) 1

" i j i
f 2(p) = -p/{l+(k-l)p}(l-p) and K is a constant to be determined so that

the level of the test meets the specified value.

2
Under Ho, for large m, -2 lnX - X1. It is clear that the ML estimation

for p is cumbersome and the exact distributions of p and the LR statistics

are nearly intractable.

For one-sided alternatives, the small-sample behaviors of the LR tests

can be even worse. For example, defining a test to be vacuous if the test

statistic is a constant, we have,

Theorem 2. The likelihood ratio tests for testing H0 1: p = p+(0 < p+ < 1)

against H11 : p < p+ and also for testing H02 : p = p (-l/(k-1) < p_ < 0)

against H12 : p > p_ are vacuous with positive probability.

Proof: Let m = 1, since similar proof holds for m > 1. Now,

iJ I = (l+(k-l)p)(l-p) k - l , dj j/dP = -k(k-l)p(l-p)k-2 . So, IE 1-i t for

0 < P < 1 and J for -i/(k-l)< p < 0. Next, consider the representation of

I'Z iY as in the portion within the second bracket in (2.1). Then

d(Y'EIY)/dp = [{l+k-1) 2 (Ey2 ) + {--(k-1) P2} 2 l ) 2

= [Cl(p) (Ey ) + c 2 (p) (yi) 2 ]/{ (l+(k-l)p) (i-p)}2

2
= h(p,y i,ZYi), say.

Consider testing H against Hl. Observe that if ,E'Y p 0for 0 < P < 1,

then Sup f(*) under H11 will be attained at P - P+ which also yields Sup f(*)

under H0 1. Hence, to prove the theorem for these hypotheses, it suffices to

show that, h(°) < 0 with positive probability.
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By the reduction to the canonical form (Rao, 1973) for SSMN distribution,

there exists an orthogonal transformation, Y -) Z, such that, Ey. = z2 and
1 1

= Eyi/& , where zi, i=l,...,k are all independent. It follows that

z 1 N(O,l+(k-l)p) and z~ N(0,I-p), j = 2,...,k. Hence

22 2 <0

P[h (PyiEy i ) < 0] = P[{kc (P)+c (p)}{l+(k-l)p}X2+(l-p)c l (p) 2k 0]
1 2 1 1 1 Xk_. 0)<

2 2 2where X, and Xkl are independent X variables with 1 and k-l degrees of

freedom respectively. To show that the above probability is positive, it

suffices to show that, kc2 (P)+c 1 (p) = -(k-l) (l-p)2 is negative under H1 1,

which is obviously true. This establishes the theorem for testing H0 1 against

H1 1. Since h(o) is an indefinite quadratic form in Z.'s, and c1 (p) > 0 and

c2 (P) < 0, suitable modificationsof the above arguments also establish the

theorem for testing H0 2 against H12 Due to the above difficulties we consider

below several alterantive tests for p.

2.2 Test based on BNUE of p. From (2.1), where m=l, it follows that

2
(Ey.,Zyi) is a sufficient statistic for p. But this is not complete, since,

E(Ey i ) = 0. Note that, E(yiYi,) = p, i #il , = 1,...,k. Further,
y)2 2 tha

(yi 2 _ EZyi = EyiYj, so that based on a sufficient statistic a'natural

unbiased estimator for p is E yiYi,/k(k-l). For m > 1, considering
i~i1

natural estimators of the form, E a.( E Y .yi. /k(k-l)) it follows that
j 1# ii

the best (minimum variance) natural unbiased estimator (BNUE) of p is

j ii y lJi/nk (k-1).

Hence a test for p against one or two-sided alternatives can be based

on p. But it is known that a test based on a good estimator need not be

a good test [e.g. a test for correlation coefficent in the bivariate case

(Kendall & Stuart (1967)). However, for the present case, it is

reassuring to note the following desirable result.
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Theorem 3. For testing H : p=O against H p < (>)O, the test which rejects
0

H iff, p < (> c')c, where c(c') is determined to give the desired level
0

of significance, is unbiased.

Proof: For the canonical form of SSMN distribution discussed in Theorem 2,

using m similar orthogonal transformations on y.j's, i=l,...,k, one for

each j, j=l,...,m, Y. - Z., we have,-9 -

= Y2i2) }/ink(k-l)j=~{ 2lJ a2i }/nk (k- (2.2

ij i li Iii

22
Then, p is distributed as {(l+(k-)p)(k-1) 2 - (1-p (k-1)}/mk(k-1)

2 2 2where and (k-l) are independent X variables with m and m(k-l) d.f.
respectively. Under H , the distribution of p is the same as above, with

p~oo

Consider H p > 0. To prove the theorem in this case, it suffices to

show that

(k-1) < (l+(k-l)p)(k-1)X - (l-P)X 2

)(-( k )<m m (k-l)

which is clearly true. The proof for H1 : P < 0 follows similarly.

Note that, - < 4 p < c and it may be desirable to consider the modified

truncated estimator p, where

Kz
-1/(k-1), P < -1/(k-1)p = ,-1/(k-1)< <1

, > 1
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2.3 Locally most powerful test. No small sample optimal test for p

seems to be known. One such test is presented in the following theorem.

Theorem 4. The unbiased tests, defined in Theorem 3, based on the best

natural unbiased estimator p of p, are also locally most powerful tests.

Proof: Let Z denote the first derivative of the log-likelihood functionp

with respect to p. Then a LMP test for testing H0 : p=0 against

HI: p > (<) 0 is given by,

20 > (<) k, (2.3)

where k is to be determined to provide the desired level of the test.

Now, (2.3) is equivalent to

-{I (0) + '12 (0)1 > (<) k'

'-1l
where T (p) = dIzE /dp and T2 (p) - d( Y. Y.)/dp. Use of the expressions

for T 1(p) and T 2 (p) as given in proof of Theorem 2 and some simplifications

establish the theorem.

Due to the remark (i) following (2.1), from Kallenberg (1981) we conclude

that the shortcoming of the LMP test, under suitable conditions, tends to zero

at the rate m f1 log at 13/2 where (I c(0,1) is the level of significance.m

2.4. Exact null and non-null distribution of p. The exact distribution of p

2
is that of the weighted difference of two independent X variables with

different weights and arbitrary d.f.s. Now, historically, this problem was

attempted by Pearson et al (1932, p. 341) and later solved only partly for

the very special case of equal weights and equal d.f.s by Pachares (1952).

It was also encountered by Anderson (1963, p. 139) who conjectured a possible

approximation. The distribution is presented below in terms of Kummer's

function. For percentage points see Gokhale and SenGupta (1982).

Let U(a,biz) give independent solutions to the confluent hypergeometric

differential equation of Kummer:

Zd2 w/dz2 + (b-z) d /dz - aw - 0.
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Then, in terms of an integral

-l ,a-i b-a-i
U(a,b;z) = [(r(a)] - I f exp(-zv)V (l+V) dV , a > 0, z > 0

0

and in terms of the 1F1 hypergeometric function,

SF1 (a,b;z) z (+a-b,2-b;z)

sin - r(l+a-b)r(b) - F(a)1'(2-b)

Theorem 5. Let V = a1V 1 - U2V2 where a1 ,a2 > 0 and VI,V 2 are independent

X2 variables with v 1 and v 2 d.f. respectively. Then, the probability density

function of V is given by,

f(v) = [C(v 1 ), 2 )/'(V%1 /2) Iv exp(-v/2a I)

*U[v 2/2, (V 1+V2 )/2; {(a 1+ 2)/2a 1a 2v] , v > 0

(W V 2-2)/2
= [CCV 1),V 2)/P(v 2/2)](-v) exp(v/2a2

U[ 11/2, (v 1+v2 )/2; {-( 1+2 )/2 1a2}v], v < 0

whr -1i2 (V1+v2)/2 LV1/2 YV2/2
where C (V,V) =2 a1 a2

12 1 2

Proof: 1 f(v) = f g1 {(v+a 2v 2)/a 1 g 2(v 2) dv2

T ~-C

where g, represents the probability density function of V., i=1,2.
1

For V > 0, noting that the limits of the above integral reduce to 0 and w,

simplifications yield the form of f(v) as in the theorem. For v < 0,

in order to represent f(v) in terms of U(-) consider the following. First

note that the exponent for U(.) must be negative. An initial transformation,

a2v2 = -vy and then a further tranformation y-l = z yields the claimed result.

Using the above theorem and (2.2) we have the following Corollary.

Corollay. The exact non-null distribution of is given by f(v) of Theorem 5

with V1 = m, V 2 = m(k-l), a1 = {l+(k-l)p}/mk and a2 = (l-p)/mk(k-l) from

which the null distribution is obtained by substituting P = 0.
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2.5 Asymptotic null and non-null distributions of p From the representa-

~ 2
tion of p in Section 2.2 as a weighted difference of two independent X

variables, it follows that

-h h h-j h j h-3,hl,.E(ph I (-l)h ) a 1 (1 j 1 112,h-j' h=1,2...

j O I

2'= (s ) ad'= 2s

where a1 and a2 are given in Section 2.4, s= E( ) and 2,s E(X(kl))

s = 0,1,...,h. Recalling that p =j~l { ) y..iJj/k(k-l)}/m, by Central

limit theorem, 
we have

Theorem 6. k(m/2) (p-p) is distributed asymptotically as a normal

variable with mean 0 and variance {l+(k-3P? + (l-P)2/(k-1).

2.6 Tests for p under constrained parameter space. In many applied

problems, in addition to having SMN or SSMN distribution, further informa-

tion on p may be available. For large k, we need p > 0 in order that Ep

be positive definite. Again, e.g., in the problem of psychological testing

theory considered by Wilks (1946) or in testing (Box, 1950) the Model II

assumptions for a balanced one-way analysis of variance, etc. it is natural

to require p > 0. Gleser and Olkin (1969) have discussed these examples and

derived likelihood ratio tests for p under the restriction p > 0 on the

parameter space. We consider the same problem for SSMN distributions. As

noted earlier, even with unconstrained parameter space, the likelihood ratio

test suffers from several undesirable properties. We propose below an

alternative test based on the characteristic roots of the sample correlation

matrix, study its unbiasedness and provide the null and non-null asymptotic

distributions of the test statistic. Through obvious modifications, the

same procedure can be applied to the case of p < 0.

Let the smallest characteristic root of Zp he A. Then for p > 0,
pa

)=-0- with multiplicity k-l. We may estimate by 1-p where p is a
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modified estimator of p, e.g. the modified maximum likelihood estimator or the

modified BNUE, modified by the restriction p > 0. Alternatively consider
k

estimating A directly. Now d = [ di/(k-l) is an intuitive estimator
i=2

of A, where d1 > ... > dk are the characteristic roots of the sample
1-I -

correlation matrix. Further, from Anderson (1963), [(m-l) (d-X)/{A(k-(k-l)A}]

[k(k-l)/2]1 is asymptotically a standard normal variate.

Theorem 7. Let Y., .,Y be a random sample from the SSMN distribution

with p > 0. Then

(a) Testing H0 : P=P0 against H1 : P > (<) p0 is equivalent to testing

H': X = X0=l-P0 against HI: X < (>) L

(b) The test which rejects H0 in favor of H : p > (<)P 0 if and only

if di <(> d;) d0,d0(d) a suitable constant, is asymptotically un-

biased for all p satisfying 0 < p0 < p < (k-2)/2(k-l)

[(k-2)/2(k-l) < p < p0 < 1].

Proof:(a) First note that for a k x k correlation matrix, (k-l) roots are

all equal if and only if it is of the form E P The if part is

trivial. The only if part follows from Anderson (1963, Appendix

A). The desired equivalence then follows trivially.

(b) Consider HIl: p > P0 > 0. We use the asymptotic distribution of d

given above. Then, for large m,

P(d < d 0 IHo) = a <=> do = (-T )X (k-(k-l) 0)[2/k(k-l) (m-l)]1 + X0

The proposed test will be asymptotically unbiased if, for large m,

P(; < d01HI) > a, i.e. if, for all X1  A0 '

(-T) A0 {k-(k.-l)X 0 }[2/k(k-l)(m-l)] + (A0 -A)

> IX. 1 llk_(-kll 1}. [2/k(k-1) (m-l)]

which reduces to the condition A {k-(k-l)X } < A {k-(k-l)X l. Let
0 0 11

g(X) = A{k-(k-l)A}. Then g(A) 4 A if A > k/2(k-l) or p < (k-2)/2(k-l), as claimed.

The proof for HI: 0 < p < P0 follows as in above with obvious modifications.
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3. Tests for the generalized variance I01. As stated in Section 1 and

also discussed by Eaton (1967) tests for generalized variance are often

of practical importance and interest. We consider several tests for IEP .

3.1 Likelihood ratio test. First note that, JEPI < 1 for p # 0. Next,

consider the following

Lemma 1. If IE I = a2 < 1, then there are precisely two real distinct
P 0

solutions for P.

Proof: Recall (from the proof of Theorem 2) that JE I for -1/(k-l) < p < 0

and + for 0 < p < 1. Hence, due to strict monotonicity there are two real

solutions, say p2 > 0 > P1 to 1Z = aY.

Then (using MLE of p from Section 2.1) we have

Theorem 8. The likelihood ratio test for H0 : JE = o2 against H1: 2

is given by

Reject H iff 2 = (I 12 exp{-m / y!( _2l)2}< C
j=l -3 * p -J

m m
where p** is such that I f(Y.;p**) = max H f(Y.;p), p is the 14LE of p and

1 p,p 1
C is a constant to be determined such thai the test has the desired level.

Under H0 , for large m, -21n A '\X2
M 1,

The LR test statistic is computationally cumbersome. For one-sided

alternatives, it becomes even more repulsive. Alternatively, another test

is considered below.

3.2 Tests based on the smallest characteristic root. Let P1 and P2 be as

defined in Proof of Lemma 1. Now, the distinct characteristic roots (c.r.)

for are l-pi and l+(k-l)pi, i - 1,2. Thus the following definition isi.- Pi
introduced, noting that for (k-l)p0 -Ps, the c.r.'s are all different,

i # J, i,J-1,2.
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Definition. 1-pi, l+(k-l)p i, i=i,2 are defined as the conditional

characteristic roots (c.c.r) of E subject to J = , where Pi i-1,2

2are the two distinct real solutions to JE = a0.
P 0

Lemma 2. The c.c.r.s. are all different for 0 < a2 < 1, k > 2.

Proof: It suffices to check C.: (k-l)pi j -pi, i d j,i,j=1,2.

Consider C1. Suppose, if possible, (k-l)pl = -P Then, from Lemma 1,

the defining relation between p1 and p2, i.e. fE j = p2 reduces to
p1  p2

)k-'T(p) =[{l+P2/(kl)}/(l-p )]- _[{l+(k-l)p }/(l-p 2 )] = O.2 2 2 2 2

To establish C1 it suffices to show that '(p) has no real solution in

(0,1). Now, letting

T(P) f fl (P) - f2 (p), fl(p) = {l+p/(k-l)}/(l-p), f2 (p) = {l+(k-l)p}/(l-p)

we have

T'(p) = [f-2 (p)-l]k/(l-p)2.
1

But, p > 0 <-> f (p) > 1 <=> {f -2(p) > 1, k > 2} <=> T'(p) > 0,1 1

so that T is strictly monotonically increasing for 0 < p < 1. The desired

result then follows by noting that Y(p) is continuous at p = 0 with T(0) = 0.

A similar argument yields C2 since 0 < f1 (p) < 1 for -1/(k-1) < p < 0.

2
For k-2, p = -p2 so that, testing JE j is equivalent to testing p

Thus, in the following sequel, it is assumed that k > 2. Then, the smallest

c~c~., ~c~~r( I ~ I= a 2  2
s.c.c.r(E P P I a02, p 0 known) is uniquely defined by virtue of

Lemma 2 and it will be denoted by X(p,00 ).
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Lemma 3. If IFI c 2 < a 2 T~p < 1, then X(y,a I) < X(po0

Proof: First consider, Ijp = 02 and let p < P2 be the two real

solutions. 1+oc-l)p and 1-p 2 are less than both 1-p and 1-0k-l)p 2 since

P1 < 0 < P2. Then the s.c.c.r is either l+(k-l)p1 or 1-p 2 .

Next, observe that AXp,a ) and (y, must be of the same functional

form. Consider, e.g., the case, X(p,, O) 0 l+(k-l)p1 , i.e. (k-l)pl<-p 2.

If possible, suppose A(y,a1  - l-y2, i.e. (k-l)y1 > -y2. Here k is fixed.

2 2Since XZ6,0 ), -1/(k-l) < 6 < 1, is a continuous function of Y , for

(k-l)y1 > -Y2 to hold, there must exist a n such that (k-l)n1 =M-n2,

which contradicts Lemma 2.

It remains to show that l+(k-l)p I > 1 +(k-l)y1 and 1-p2 > 1-y2.

This follows from the strict monotonicity of

Theorem 9. Testing H - = 0 M HI 0 2 > 02 is

equivalent to testing H;: X(P,a0) < A(p,aI).

Proof: For a k x k correlation matix, (k-i) roots are all equal iff

it is of the form E . The if part is trivial. The only if part followsp

from Anderson (1963, Appendix A) as also stated by Lawley (1963). The

theorem then follows by noting Lemma 3.

The above theorem motivates tests for 1'p to be based on estimators
p

of smallest characteristic root (s.c.r.). We propose the tests:

Reject H: I I I 02 against H1: zl I< 0 iff A <(>)X0,

and against H": P p iff < or > A"

... . .,S~J. . . .. ... . ... . ,. . .iI I



-16-

where A is a suitable estimator of s.c.r. and X0,X and X" are chosen so

as to give the desired level.

In the following sequel, Lemmas 1,2 and 3 are exploited to provide

some simple tests for Izp . Let X = Min.(l+(k-l)p,l-p) where p

is a suitable estimator of , e.g. P,por:p. Consider p = 0 the truncated BNUE

of p,due to the difficulties associated with MLE as seen in Section 2.

Then, for 0 < 0 < 1,

P PPX < X)=P 1p < (X -1) / (k-1)j1 P4 < 0IP (p < 0) + Ppp> l-X IP > 0} P(p > 0).
0 00

The null and non-null exact distributions can then be obtained from the

distribution of p given in Section 2.4, since from Lemma 2 the s.c.c.r. and hence p

is uniquely specified under H0 and H . The unbiasedness of this test can

be investigated in the same manner as in Section 2.3.

H0 may motivate modified estimators of s.c.r. Suppose, e.g., H0

specifies X(p,a 0) = 1 +(k-l)Pl. In this case, let us assume the population

s.c.r. is of the form l+(k-l)p, p < 0. Since, also X(p, 0) and X(y,ay1

must be of the same form as proved in Lemma 3, one may restrict to estimators

of the form 1+(k-l)p. One approach could be to use the modified BNUE or MLE of p,
modified by the restriction p < 0. Another would be to consider the

characteristic roots of the sample correlation matrix R. For example,

l+(k-l)p1 being the smallest root also specifies that the s.c.r. in the

population is of multiplicity . This enables us to use Anderson's (1963)

result: [(m-l)h(d- 2)/{X 2 (k-q2) ] (kq1q2/2)h is asymptotically distributed

as a standard normal variable where the k x k population correlation matrix

R has q1 roots equal to A1 and q2 - k-q1 roots equal to A2 < A 1 ,-

Sd /q2, di > ... > d are characteristic roots of R based on a sample
q + 1

Al
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of size m. Hence, for large samples, the test can be based on d. For

X(p aO) -l+(k-l)pl or l-P2 , q2 - 1 or k-i respectively. Further, A

can be taken as d and a test for H0 : 2I can be based on

it as before. The asymptotic distribution of d is completely specified

under H and H whenever the corresponding s.c.c.r.s are defined.
0 1

4. Applications. The model in this paper assumed known means and variances.

Wilks (1946) considered the same model with known means and unknown variances.

Cox (1958) gives a practical example of known mean and known variance situa-

tion. Efron and Hinkley (1978) discuss the same model as in this paper, for

the special case of k = 2 in some detail in terms of information and curvature.

Goodman (1981) applies this model, with k-2, to the analysis of two-way

contingency tables. The SSMN distribution is also often applied to problems

in reliability. The methods discussed here are hoped to also indicate solutions

to a variety of problems with patterned correlation matrices, e.g. multi-

variate intraclass correlation, autoregressive, moving average etc. models

(Sampson (1978)). For detailed discussions and a new development using the

notion of mean curvature, of the multiparameter LMP test see Sen Gupta and

Vermeire (1981). This may be used to generalize the results of Section 2.3

to the multivariate intraclass correlation models.
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